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review of NRBCs for phenomena driven by the wave
equation may be found in Givoli [2].The numerical simulation of nonlinear gravity waves propagating

at the surface of a perfect fluid is now usually solved by totally For this kind of equations in unbounded domains, exact
nonlinear time-domain numerical models in two dimensions, and absorbing boundary conditions nonlocal in both space and
this approach is being extended to three dimensions. The original time [3], or partially nonlocal [4, 5] has been developed
initial boundary value problem is posed in an unbounded region,

for FEM solvers. Following Engquist and Majda [6], someextending horizontally up to infinity to model the sea. Its numerical
authors have devised higher order approximate localsolution requires truncating the domain at a finite distance. Unfortu-

nately, no exact nonreflecting boundary condition on the truncating NRBC, in order to improve the results obtained with the
surface exists in this time-domain formulation. The proposed strat- classical first-order Sommerfeld condition [7–9]. Using
egy is based on the coupling of two previously known methods in similar techniques, Bayliss et al. [10] derived high orderorder to benefit from their different, and complementary, band-

NRBC for time independent elliptic problems in exte-width: the numerical ‘‘beach,’’ very efficient in the high frequency
rior region.range; and a piston-like Neumann condition, asymptotically ideal

for low frequencies. The coupling method gives excellent results The mathematical modelling of the propagation of
in the whole range of frequencies of interest and is as easy to free surface gravity waves leads to an initial boundary
implement in nonlinear as in linear versions. One of its major advan- value problem (IBVP) posed in a domain bounded bytages is that it does not require any spectral knowledge of the

a moving unknown free surface on which a nonlinearincident waves. Q 1996 Academic Press, Inc.
boundary condition has to be satisfied. In that context,
even after linearizing that condition which leads to posing
the problem in a fixed time independent domain, noINTRODUCTION
exact absorbing condition preventing spurious reflection
exists on the fictitious closure boundary we are obligedA large number of numerical methods devoted to

the simulation of two-dimensional nonlinear free surface to introduce closing the domain at a finite distance.
Thus, the absorption of outgoing waves in the numericalflows appeared in the literature during the last decade.

Most of them are based on the so-called mixed Euler– simulation of unsteady free surface hydrodynamics is still
an open problem.Lagrange (MEL) approach introduced in 1976 by Lon-

guet-Higgins and Cokelet [1]. A lot of different applica- A well-known solution (see, e.g., [11–13]) consists in
matching the inner solution at the truncation boundarytions, including strongly nonlinear problems which could

not be solved before became amenable to numerical with an outer one generated by Kelvin’s Green function
which satisfies intrinsically the free surface condition.simulation, up to the limit of the wave breaking occur-

rence. All these time-domain models are based on time These Green functions relative to free surface hydrody-
namics were formulated a long time ago [14] in eitherstepping; they require the solution of a boundary value

problem for the velocity potential at every time step. frequency or time-domain linear formulation. But, being
basically limited to linear application, they impose match-Their application to open domain problems like those

encountered in naval applications requires the artificial ing at a large distance in order to minimise the difference
between the inner nonlinear solution and the linear outertruncation of the domain with a fictitious surface where

a nonreflecting boundary condition (NRBC) must be one and, consequently, increasing the size of the computa-
tional domain.introduced in order to let the waves exit the domain as

they would do in the open sea. Using Rankine’s Green functions to solve the inner
problem allows the solution of linear, as well as nonlinearThis is a common problem in numerical modelling of

wave propagation in many fields of physics. An extensive formulations of water wave propagation problems. As a
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140 A. CLÉMENT

counterpart, this approach necessitates truncating the com- complementarity in terms of bandwidth and naturally led
us to experiment their coupling. As we shall see in Sectionputational domain at a finite distance and absorbing outgo-

ing waves at the artificial end of the domain by a strategy 4, the results obtained by this coupling were found to be
excellent, better in fact than we expected and as good infitted to and included in the IBVP solver. A thorough

review of the available numerical techniques to solve this linear as in nonlinear simulations.
Compared to the previous methods (‘‘absorbing beach,’’problem may be found in Romate [15].

In the frequency domain, the well-known Sommerfeld Orlanski’s condition, ...), the major advantage of this new
coupling method is that it ensures high absorption effi-condition provides a simple linear relation between the

partial time derivative (i.e., the dynamic pressure) and ciency whatever the spectral content of the incident waves
may be (regular, bichromatic, narrow or wide banded irreg-the normal derivative (i.e., the horizontal fluid velocity).

Unfortunately, this condition has no counterpart in the ular, solitary waves), and without any kind of tuning with
respect to their frequency. This kind of robustness is crucialtime domain. The so-called Orlanski’s condition [16], used

by a lot of authors (see, e.g., [17–20]), is nothing but a when developing a general purpose numerical wave basin.
simple transposition of the Sommerfeld relation to the time
domain, replacing the frequency dependent wave phase 1. NUMERICAL SIMULATION OF 2D FREE SURFACE
velocity by a time varying ‘‘velocity-like’’ coefficient c(t). GRAVITY WAVES
This condition is local in both time and space and cannot

The initial boundary value problem to be solved is de-therefore give good results for purely unsteady (i.e., non-
rived through the usual assumptions of the free-surfacemonochromatic) incident waves. It is easy to show, indeed,
potential flow theory; i.e., the fluid is incompressible andthat an exact absorbing condition for free surface waves
inviscid, surface tension is not considered, the atmosphericshould be nonlocal at least in time to account for the
pressure is constant in both space and time and is given adispersive nature of the free-surface condition. Thus, the
null reference value, and the flow is irrotational. The free-use of the Orlanski condition should be restricted to the
surface flow is driven by gravity only. The fluid velocity iscases of regular incident waves of known frequency, or
thus the gradient of a scalar potential function F of spaceto very long waves, because in both cases the velocity
and time: V(M, t) 5 =F(M, t).coefficient is actually a constant after the transient phase

The fluid domain D is bounded by (Fig. 1):of the flow from rest.
This feature does not fit the aim of our study which was

—the free surface Fprimarily to devise an absorption strategy that is indepen-
—the bottom Bdent of the spectral content of the incident wave train

and efficient even in transient and purely unsteady free —the wave making surface C
surface flows. —the wave absorbing surface P.

In Section 2, we present the absorption performances
of a piston-like absorbing boundary condition (PABC) The free surface F is a function of time and is unknown

a priori. Fd denotes a portion of F on which a modificationderived from the study of an experimental wave-absorber
device for wave tanks [25, 26]. In the present application of the free surface condition will be introduced. In order to

save computing time, particularly in nonlinear simulations,to numerical wave basins, the piston control law was simpli-
fied in order to retain only the low frequency asymptotic the water depth was taken constant in the present study,

but the method would apply to uneven bottoms as well,term. As a consequence, this boundary condition is effi-
cient only in the small frequency range, but we shall see that without expected loss of efficiency, provided the distance

between the bottom irregularity and the absorbing zonethis drawback will be easily compensated by the coupling.
An alternative method (see [21–24]) consists in introduc- is large enough. It has been used with success in the case

of the diffraction of a solitary wave by a circular cylindering an extra dissipative term in the free surface condition
on a limited portion of this surface adjacent to the artificial sitting on the bottom. In the present framework of free-

surface potential flows, a nonuniform bottom would simplyboundary (see Fig. 1). Passing through this area, waves
lose a part of their energy first on their way out and then, diffract the water waves propagating in the domain without

changing their nature with regard to the proposed absorp-for that part reflected upon the boundary, on their way
back. This method is sometimes referred to as the ‘‘numeri- tion method.

The left end of the domain C will be given a prescribedcal beach’’ method. It may be very efficient for high fre-
quency waves, provided the beach length is longer than motion to generate gravity waves which will propagate

from this wave making surface in the x-positive direction.the typical wavelength of incident waves. This method is
presented in Section 3. The right end of the fluid domain consists of a vertical

surface P. The goal of the present method is to preventComparing the performance curves (i.e., efficiency ver-
sus frequency) of these two methods clearly highlights their wave reflection upon this termination as if the domain
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FIG. 1. The two-dimensional fluid domain.

was unbounded, by a suitable combination of boundary ­F

­x
(y, t) 5

dx
dt

5 v(t), M [ P, t $ 0. (1.6)conditions on P and Fd . On P, a time variable Neumann
condition will define the motion of this surface in response
to the incident wave train. The set of equations (1.1) to (1.6) forms an initial-bound-

As can be noticed, all the boundaries of the problem ary-value problem for the velocity potential F. Provided
are moving surfaces, except the bottom. Furthermore, the that initial conditions are known on the free surface and
motion and the position of the free surface and of the wave that the function v(t) and w(t) are given from t 5 0 up to
absorbing surface are themselves unknowns of the the current time value t, this problem may be solved by the
problem. time marching procedure briefly described in Section 1.3.

1.1. The Potential Initial-Boundary-Value 1.2. The Associated Dynamic Pressure IBV Problem
Problem (IBVP)

Let us now define the dynamic pressure C by
Under the above assumptions, the velocity potential

must satisfy the set of conditions
C(M, t) 5

­F

­t
(M, t).

(1.1)

The total pressure at any point M in the fluid domain
(1.2) is given by the Bernoulli equation,

p(M, t) 5 2y 2 C 2 As(=F)2 (1.7)(1.3)

and the resulting hydrodynamic force on any solid body
(1.4) is obtained by integrating the pressure along its wetted

surface S :
(1.5)

F(t) 5 E
S

pn ds. (1.8)

When S is fixed, or is given a prescribed motion, the
calculation of F can be achieved as a postprocessing task,
computing the time derivative C by a finite difference

=2F(M, t) 5 0, M [ D, t $ 0,

Dx
Dt

5 =F, M [ F, t $ 0,

DF

Dt
5 2y 1 As(=F)2, M [ F, t $ 0,

­F

­x
(y, t) 5

dx
dt

5 w(t), M [ C, t $ 0,

­F

­y
5 0, M [ B, t $ 0,

where D/Dt denotes the Lagrangian material derivative.
w is a given function of time only; then C is a numerical
piston wavemaker.

The gravity acceleration g was set to unity and the water
depth h was chosen as the reference to nondimensionalize scheme from the results of the F problem. But suppose
the length variables of the problem. This introduces the now S to be moving in response to the waves, then the
natural reference value (h/g)1/2 for all the time variables problems in F and C are coupled and must be solved
which will thus be nondimensionalized with respect to it simultaneously to permit the integration of the ordinary
from now on in the whole paper. differential equations (1.4), (1.6) giving access to the in-

The choice of a piston-like Neumann condition as (1.4) stantaneous boundary position. Two strategies may be
on the opposite wave absorbing surface P is motivated by adopted to handle this problem:
asymptotic properties of the transient incident waves to

—the partial time derivative C may be evaluated by abe absorbed and will be discussed later (see Section 3). At
finite difference scheme [19, 29, 30].the moment, let us just give it the same general form

as (1.4): —a parallel initial boundary value problem may be
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solved for C (see, e.g., Vinge et al. [31], Cointe [23, 24], —mirror image singularities with respect to the plane
bottom are used in order to eliminate the discretization ofJagannathan [18]).
this surface,The latter method was preferred here mainly due to the

—the evolution of the vertices is Lagrangian on the freefact that it requires practically no extra numerical cost,
surface, and Eulerian on the material surfaces,simply adding one supplementary RHS to the linear system

already built to solve for F by a BEM method. —a double node technique is used at the intersection of
The C problem is posed as the free surface with the vertical boundaries,

—the solid body surfaces are regridded every time step
with a length constraint at the intersection with the free-
surface, in order to optimize the solution accuracy at the
corner.

Once the BVP problem for F has been solved that way

=2C(M, t) 5 0, M [ D

C 5 2y 2 As(=F)2, M [ F

­C

­x
(y, t) 5 Fw

.
(t) 2 w(t)

­2F

­y 2G , M [ C , t $ 0,

­C

­x
(y, t) 5 Fv. (t) 1 v(t)

­2F

­y 2G , M [ P

­C

­y
5 0, M [ B

(1.9)

at t 5 tk , both the potential and its normal derivative are
known on all the domain boundaries. Then, the bound-
aries’ geometry can be advanced in time to tk11 by inte-
grating the ODEs (1.2), (1.4), (1.6), and the Dirichlet con-
dition is updated on the free surface integrating (1.3) by

6
a standard fourth-order Runge–Kutta procedure, includ-
ing an in-line dynamic time step adaptation. The tangential

where the overdot denotes differentiation with respect to velocity ­F/­s needed in the evaluation of the right-hand
time. The boundaries positions are updated by the ODEs side of (1.3) is calculated by a weighted arctang method
integration in the parallel solution of the F problem. [28],

Under the assumptions of small wave steepness and
small displacements of the solid boundaries from their
initial rest position, the above nonlinear IBVPs for F and ­F

­s
(si ) 5 tan Fui(si 2 si21) 1 ui21(si11 2 si )

(si11 2 si21) G , (1.10a)
C may be linearized and posed in a fixed geometrical
domain D. In that case, the LHS of the linear system to

wherebe solved becomes time invariant and the matrix may be
assembled and possibly preconditioned or inverted, once
and for all at the beginning of the computation.

ui 5 tan21 FFi11 2 Fi

si11 2 si
G . (1.10b)The proposed method for outgoing wave absorption was

implemented and tested in both linear and nonlinear ver-
sions of the algorithm.

The new geometry of the domain and the updated Neu-
mann and Dirichlet boundary conditions being known at1.3. The Time-Stepping Solution of F and C Problems
the new time step tk11 , the process may be iterated.

Suppose the ODEs (1.2), (1.3) have been solved up to We must emphasize here that this implementation of
the time tk 5 kd, where k is a positive integer and d is the the MEL method was found exempt from any sawtooth
time step. At this instant tk , the geometry of the domain instabilities of the free surface reported by several authors
in which Laplace’s equation applies, the normal velocity and that, consequently, neither regridding nor smoothing
Fn on the material surfaces C, P, and B, and the potential of the free surface were necessary in the numerous nonlin-
F itself on the free surface F are known. ear simulations performed with this code.

This mixed Neumann–Dirichlet boundary-value-prob-
lem may be solved by a boundary element method (BEM),

2. THE PISTON-LIKE ABSORBING BOUNDARYas is generally the case for this kind of nonlinear simulation
CONDITION (PABC)of free surface potential flows. Because emphasis will be

put on the outgoing wave absorption in this paper, we shall The Neumann boundary condition (1.6) is said to be
just recall hereafter the main features of our algorithm piston-like because the horizontal velocity v(t) is not local
([27]): in space, i.e. v is not a function of y. This is a fundamental

difference with the widely used Orlanski condition,—plane panels are used to approximate the domain
boundary,

—the strength of Rankine sources and dipoles varies ­F

­x
(y, t) 5

1
c(t)

­F

­t
(y, t), (2.1)

linearly on the panels,
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where the local normal velocity is considered to be propor- the same problem driving, not a piston, but a hinged plate
from the wave elevation signal, instead of the force signal.tional to the dynamic pressure and, therefore, a function

of y. This condition is nothing but a direct transposition The solution of this control problem is straightforward
in the linearized frequency domain formulation of thein the time domain of the Sommerfeld condition which

is asymptotically exact in the frequency domain as the problem. Denoting by g the circular frequency, and writing
absorbing boundary is moved far away from the wave
source. In that specific case of time harmonic flow, the f(t) 5 Re hF(ig)e igt j

(2.3)coefficient c in the absorbing boundary condition is actually
v(t) 5 Re hV(ig)e igt j ,the phase velocity of the incident waves and is a real func-

tion of the wave frequency g. Then the transposition of
the Sommerfeld condition to the time domain should for- it can be shown [25] that the transfer function between
mally be obtained by the inverse Fourier transform and the ideal velocity and the force is given by
should result in a convolution product which implies a
relation nonlocal in time between the normal derivative
and the dynamic pressure, instead of a form like (2.1). Ṽ(ig)

F(ig)
5 H(ig) 5 As F g 5

m3
0(g 2 2 g 4 1 m2

0)
(2.4)The coefficient c(t) in this relation has the dimension of a

velocity but is void of any physical meaning and cannot
be derived from the known solution of the problem in the 1 ig Oy

k51

g 4

m3
k(g 2 2 g 4 2 m2

k )G21

,
frequency domain.

In some reported numerical applications of the Orlanski
condition (2.1), this coefficient is kept constant and equal where m0 tanh m0 5 g 2 and mk tanh mk 5 2g 2, and the
to the upper limit value Ïgh of the long wave velocity in tilde denotes the values of the variables in the optimal (i.e.,
the linear theory of free surface waves; but in most cases, it perfectly absorbing) regime.
is considered as an actual function of time and continuously In this linear formulation of the problem, (2.4) may
extrapolated from the results of previous time steps during easily be transposed to the time domain through the convo-
the simulation (see, e.g., [17, 18]). This in-line estimation lution theorem, leading to
requires the knowledge of the potential in the fluid domain,
in the vicinity of the absorbing boundary P. When the

ṽ(t) 5 Ey

2y
f(t)h(t 2 t) dt (2.5)problem is solved by finite differences [37] or FEM [17],

this is easy to implement, but in a BEM context, where
solutions are known only on the boundaries, this feature

in which h(t) is the inverse Fourier transform of H(ig).
makes the Orlanski condition more difficult to implement

Thus, the instantaneous velocity of the perfect piston wave
[18, 38].

absorber is formally given by the convolution product (2.5)
of the hydrodynamic force by h(t). The lower bound of2.1. Principle and Derivation
this integral can be set at the instant when the fluid starts

The piston-like condition proposed here is very easy to from rest, which may be chosen as the origin of the time
implement, especially when solving by BEM, either in lin- variable. But, due to the fact that h(t) is anticausal [25,
ear or nonlinear formulation. It derives from results ob- 33], that is, (h(t) 5 0 for t . 0 and h(t) ? 0 for t , 0),
tained in the study of the control of physical wave ab- the upper bound must be extended up to y. Thus the
sorbing devices for wave tanks [25, 26]. computation of (2.5) which would require the knowledge

Let f(t) denote the horizontal component of the hydro- of the future values of the force is clearly not realizable. For
dynamic force on the piston P, excluding the hydrostatic physical applications of (2.5) to the water wave absorbing
term, obtained by integrating the pressure along its wetted device control, we have developed nonoptimal feedback–
surface. Hence, feedforward control strategies from realizable approxima-

tions of H(ig) [25, 26].
In the present numerical extension of that work, we shall

f(t) 5 E
P (t)

F2
­F

­t
2 As(=F)2G dl. (2.2) focus only on the low frequency asymptotic behaviour of

H(ig). In the limit g R 0, the modulus of the transfer
function tends to 1, while the phase remains negligible up

Given this force signal from the initial state of rest at
to g > 1 (see Fig. 2). Thus, when g R 0, the relation (2.4)

t 5 0 up to the present time t, the optimal control problem
simply becomes at the leading order

was to find the piston ideal velocity law: ṽ(t), leading to
100% wave absorption when used as the RHS of the Neu-
mann boundary condition (1.6). Milgram [32] tried to solve Ṽ(ig) 5 F(ig), (2.6)
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energy absorption coefficient may be defined the same way
as above, but now from the energy decay:

CE 5 1 2
E1

E0
. (2.9)

This second method was used whenever the former one
was not appropriate, as for instance when testing absorp-
tion of bichromatic wave trains (see Section 4.2).

For steady state monochromatic waves, the two coeffi-
cients should verify:FIG. 2. Frequency domain transfer function H(ig) of the ideal piston

wave absorber.

(1 2 CE ) 5 (1 2 CA )2. (2.10)

The quality of the IBVP solver with regard to energyresulting, in the time domain, in the boundary condition
conservation was incidentally checked by the close satisfac-on the control surface P,
tion of (2.10) we noticed in the computations reported in
Section 4.1, although the flow was not a steady state but
a transient one.

­F

­x
5 E

P (t)
F2

­F

­t G dl, M [ P, t $ 0, (2.7)

2.3. Efficiency versus Frequency
which will be denoted as the piston-like absorbing bound-

As stated above, the PABC (2.7) was first implementedary condition (PABC) in the following. Due to the validity
in the linear code and then in the nonlinear numericalrange of this approximation, the corresponding absorption
wave basin.strategy was expected to give its best results in the low

The amplitude absorption coefficient CA was determinedfrequency range. In order to check this point, it was first
by the first method mentioned above for nondimensionalimplemented and tested in the linear version of the numeri-
wave frequencies in the range g [ ]0, 3] which amplycal basin and then in the general nonlinear code (Sections
covers the range of practical interest.1.1 to 1.3). Results for both applications are given in Sec-

Results are plotted on Fig. 4 for both linear and nonlin-tion 2.3 below.
ear applications. In linear simulations, the wavemaker am-
plitude was set up in such a way that its stroke remains2.2. Numerical Estimation of the Absorption Efficiency
negligible regarding the basin length (ratio 5 O(1023 )). In

There are several ways by which the performance of nonlinear computations, the same criterion was applied,
a wave absorbing technique in the time domain may be combined with a fixed value of the wave steepness c which
quantified. In the present study we used one of the two is the intrinsic parameter in the linearization of the free
following methods, depending on the nature of the inci- surface boundary conditions (1.2), (1.3). The steepness is
dent waves. defined as the ratio of the wave height over the wavelength.

For monochromatic wave packets generated by the left The theoretical upper limit of this parameter before wave
vertical surface C acting as a wavemaker, we proceeded breaking is 0.14. All the nonlinear simulations reported
by measuring the decrease in amplitude before and then herein were performed with c > 0.05, except in Section
after their partial reflection/absorption at the opposite ab- 4.1, where c was varied to study its influence on the absorp-
sorbing end (cf. Fig. 3). Let A0 denote the amplitude of tion efficiency.
the incident wave packet, and A1 its amplitude after the This behaviour of the absorption coefficient with respect
first reflection. An amplitude absorption coefficient may to the frequency is not surprising if we remember that the
then be defined by boundary condition (2.7) is asymptotically an ideal time-

domain wave absorber when g R 0. The coefficient tends
to 1 in that limit and decreases rapidly after g 5 1, as wasCA 5 1 2

A1

A0
. (2.8)

anticipated from the comments about Fig. 2 in Section 2.1.
This absorption device then behaves like a high-pass filter
with regard to the incoming water waves.Another way to proceed is to evaluate the energy decay

during the absorption. Let E0 be the initial amount of The most remarkable feature of these results lies in the
very tiny difference between the linear and the nonlinearenergy brought to the fluid by the wavemaker, and E1 the

energy level after the absorption of the wave train. An codes. This was expected from the heuristic point of view,
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FIG. 3. Right-going incident wave packet (solid) and its left-going reflected part (dotted).

but it remained to be confirmed by numerical experiments. the quadratic nature of this pressure term results in low-
frequency and high-frequency force components. The ef-This made us confident in the applicability of the coupling,

in the nonlinear time-domain simulations, to the beach fects of the latter are generally negligible due to the very
low energy level they carry. On the other hand, the low-method we shall introduce in the next section.

Before that, a point must be cleared up about the practical frequency forces are responsible for the slow horizontal
drift motion of floating bodies. In the present case, takingimplementation of the PABC (2.7) in nonlinear codes. In

that context, the question of including or not the quadratic this term into account in the PABC would result in the
same kind of phenomena due to the time integration ofterms of (2.2) in the RHS of (2.7) was left open. Both options

were implemented and tested, and we have noticed that in- the piston velocity during the simulation. The consequence
would be a slow drift of the end wall of the basin whichcluding, or not, these terms in the PABC results in negligible

difference in the wave absorption efficiency. should result in a global decrease of the mean water level.
We consequently recommend not including the quadraticThe contribution of these terms to the global hydrody-

namic force is usually referred to as slowly varying forces. term and still using (2.7), even in the nonlinear implemen-
tation of the method.As a matter of fact, given an incident wave spectrum,

3. THE ‘‘NUMERICAL BEACH’’ METHOD

This method was first used by Baker et al. [22] in the
numerical solution of a similar 2D water wave problem.
The idea, from Israeli and Orszag [21] is quite simple. It
consists in adding to the dynamic free surface condition
(1.3), or to the kinematic condition (1.2), or both, an extra
dissipative term in a limited area of the free surface Fd ,
adjacent to P (see Fig. 1). Thus, passing through this damp-
ing zone in whatever direction of propagation, the water
waves progressively lose their energy. Provided the damp-
ing zone is sufficiently long with regard to the wavelength
and the dissipation is sufficiently efficient, the waves may
be entirely absorbed. This method is sometimes referred
to as a ‘‘sponge layer’’ [15, 21], or a ‘‘numerical beach’’ [24].
We shall use the latter one for convenience in the following.

After incorporating these new dissipative terms, the gen-
eral form of the modified free surface conditions (1.2),
(1.3) becomes

DF

Dt
5 2y 1 As(=F)2 2 n(x)F

Dx
Dt

5 =F 2 e(x)X 6 , M [ Fd . (3.1)
FIG. 4. Absorption coefficients of the piston-like boundary condition

versus incident wave frequency.
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step value b near the end wall, and it is defined as a cubic
polynomial in the transition zone of length c. Figure 6
shows the sensitivity of the beach efficiency with respect
to the ‘‘smoothness’’ of the transition; this is particularly
highlighted by the solid curve corresponding to a beach
with a step n(x) function upon which short waves (l ,
1.4G) reflect more and more as their wavelength decreases.

The numerical optimization of the parameters b and c
FIG. 5. n(x) for c/G 5 0., c/G 5 0.25, and c/G 5 1. was achieved using the linear version of the code, and we

finally retained b 5 0.2 and c 5 G.
As mentioned earlier, our primary goal was to devise a

time-domain numerical method of water wave absorptionThe nature of the added dissipative terms is arbitrary,
working blindly with regard to the incoming waves andand a variety of solutions can be found in the related
needing no kind of previous or in-line tuning. According toliterature. F and X may be chosen as functions of potential,
this constraint, the beach length was kept constant (G 5 2),particle velocity, wave elevation, or any combination of
that is, twice the water depth, in all the tests reportedthem, or whatever. Some authors modify only the kine-
herein.matic condition and leave the dynamic condition un-

changed (i.e., F 5 0), while others made the opposite choice
4. COUPLING THE ‘‘BEACH’’ AND THE ‘‘PISTON’’[34]. Following Baker et al. [22], Telste [35], and Cointe [23,

24] implemented simultaneously both modified conditions.
The PABC method being efficient for low frequenciesAll these methods are potentially very efficient, but their

and the beach, for high frequencies, the idea of couplingefficiency strongly depends on the ratio between the beach
them, originally suggested by Israeli et al. [21] for a one-length and the wavelength. The longer the wavelength is,
dimensional wave equation, came very naturally. Both ofthe longer the length of the beach must be to reach a given
them were then implemented in our numerical 2D waveabsorption level [23]. This feature is clearly illustrated by
basin (CANAL-1.2) to evaluate the performances of thethe secondary G/l scale we plotted at the top of Fig. 6.
coupling. This implementation is numerically straightfor-Thus, this kind of absorbing method will naturally behave

as a low-pass filter for the incident water waves, the cutoff
frequency of which must be tuned to the spectral content of
the incoming waves in order to maintain good absorption
performances for the longer waves. We shall see in Section
4 that this requirement is naturally cancelled by coupling
with the PABC high-pass filter.

Several variants of the added dissipative term have been
tested, and we finally retained, in both linear and nonlinear
simulations, the following modified free surface bound-
ary conditions:

DF

Dt
5 2y 1 As(=F)2 2 n(x)

­F

­n

Dx
Dt

5 =F 6 , M [ Fd . (3.2)

Our choice of a function F proportional to Fn in (3.2)
ensures the energy flux to be always positive from the fluid
domain to the exterior domain (i.e., the added term is
always dissipative [32]).

The matching between the free-surface and the ‘‘beach’’
must be smooth enough in order to avoid partial reflection
when the waves enter the damping zone. Several n(x) have
been tested. We finally defined a function n(x) which is
made of three parts (Fig. 5). It is null for x less than

FIG. 6. Numerical beach absorption coefficient.(xmax 2 G); G being the beach length, it is equal to its final
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on Figs. 7 and 8, where we can see indeed that the method
works as efficiently in linear as in nonlinear implementa-
tions.

As mentioned in Section 2.3, the nonlinear simulations
reported on Fig. 8 were performed with a constant wave
steepness c of approximately 5%. In order to check the
sensitivity of the method with regard to this parameter
in nonlinear applications, we made additional simulations
with monochromatic wave packets, keeping constant the
frequency at (g P 1.5), where the absorption coefficient
is minimum, but varying the wave amplitude from very
low steepness waves (c > 0.01) up to quite breaking waves
(c > 0.10).

The results plotted on Fig. 9 show that the coupling
method is more and more efficient as the wave height
increases, the coefficient growing up more than linearly
with the steepness. This behaviour is very encouraging for
using the coupling method in numerical simulations of
highly nonlinear water waves.

4.2. Absorption of Bichromatic Waves

All the tests reported in the above section 4.1 were
performed with monochromatic waves. The question of
multifrequency incident wave trains had then to be exam-FIG. 7. Coupled Piston 1 Beach methods implemented in the linear

IBVP solver. ined before concluding about the applicability of the
method in the time domain for any kind of outgoing waves.

ward. The PABC is nothing but the response of a body to
wave excitation, a problem which was already handled in
the original code for floating bodies; on the other hand,
adding the dissipative term in the free surface condition
introduces no extra unknown to the problem, thus practi-
cally no extra computational burden.

4.1. Absorption of Monochromatic Wave Packets in the
Time Domain

In order to compare with the results obtained by using
each method separately, the coupling method was tested
with the same set of monochromatic incident wave packets
as described in Section 2.2.

The results are shown by the dotted lines with triangles
on Fig. 7 for the linear application and on Fig. 8 for the
nonlinear case. The global behaviour of the absorption
coefficient versus the incoming wave frequency conforms
to our expectations. The coupling benefits from the behav-
iour of both methods in the medium frequency range. In
the worst case (g P 1.5), where neither the numerical
beach nor the piston boundary conditions used alone were
able to absorb more than 70%, the coupling results in an
absorption coefficient never smaller than 0.93 (in terms
of amplitude ratios, that is, 0.995 for the corresponding
absorption coefficient in energy). FIG. 8. Coupled Piston 1 Beach methods implemented in the nonlin-

ear IBVP solver.Another very interesting feature of these results appears
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TABLE I

Amplitude Absorption Coefficient CA for Monochromatic
(Diagonal) and Bichromatic Incident Wave Train

g1/g2 0.5 1.0 1.5 2.0 2.5 3.0

0.5 0.9512 0.9448 0.9360 0.9511 0.9673 0.9711
1.0 0.9402 0.9295 0.9353 0.9563 0.9684
1.5 0.9297 0.9409 0.9487 0.9648
2.0 0.9510 0.9554 0.9592
2.5 0.9721 0.9710
3.0 0.9749

Note. These coefficients were obtained using the linear code and the
energy decay method via (2, 10).

Figure 10 shows such a waterfall view of the free surfaceFIG. 9. Amplitude absorption coefficient versus wave steepness; nor-
during the simulation of a nonlinear bichromatic wave trainmalized frequency g(h/g)1/2 5 1.5; normalized wavelength l/h 5 2.73.

with g1 5 0.5, and g2 5 2.0. Two thousand constant time
steps (dt 5 0.1) were necessary in this case, and only one
curve every eight steps was plotted for the sake of legibility.We began our tests with bichromatic waves. They were
The displacement of the wavemaker on the left edge andgenerated by combining two monochromatic wave packets
of the piston wave-absorber on the right edge of the figureof frequencies g1 , g2 , separated by a time delay. This time
can be observed, due to the fact that the computationallag was precomputed from the knowledge of the two group
domain evolves during nonlinear simulations. One can seevelocities and the basin length in such a way that the two
the combination of short and long waves near the rightwaves arrive in the damping area at the same time (see
end of the domain, and only the weak reflection after theyFig. 10). On Figs. 10 to 15, the lines show the free surface
have passed through the damping zone.of the wave basin at successive time steps: the vertical axis

A systematic study with g1 , g2 varying in the range ofis the time axis; the left edge is the wavemaker; the right
interest [0., 3.0] was achieved, using the coupling methodedge is the wave-absorber.

FIG. 10. Absorption of a nonlinear bichromatic wave train; g1 5 0.5; FIG. 11. Impulsive wavemaker motion; linear simulation. The open
boundary reference solution.g2 5 2.0; L 5 36.
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FIG. 14. Impulsive wavemaker motion; absorbing beach; G 5 2;FIG. 12. Impulsive wavemaker motion; steady opposite wall; linear
L 5 10; linear simulation.simulation.

in the linear version of the code; The numerical results 4.3. Absorption of a Broad Bandwidth Spectrum
(see Table I) confirm the excellent results, even for the

In order to illustrate the independence of the methodcombination of very long waves with short ones (CA (0.5,
with regard to the spectral content of the incident wave3.0) 5 0.9711), and they locate the overall minimum effi-
train and its ability to work in situations actually unsteadyciency around g1 5 1.5.

FIG. 13. Impulsive wavemaker motion; piston-like boundary condi- FIG. 15. Impulsive wavemaker motion; coupled piston 1 beach;
G 5 2; L 5 10; linear simulation.tion L 5 10; linear simulation.
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or transient, we subjected it to a very severe test case. 5. CONCLUSION
At t 5 0, the piston wave making surface C is given an

A new simple strategy is proposed for the absorption ofimpulsive velocity, w(t) 5 d(t), in such a way that the
outgoing waves in linear and nonlinear numerical time-incident wave train frequency at the opposite end P
domain simulations of two-dimensional free-surface grav-varies continuously, from the lower frequencies to the
ity waves. The basic idea lies in the coupling of two methodshigher ones as time goes. This is due to the fact that
featuring complementary bandwidths. The first one, a Neu-the Fourier transform of the Dirac distribution is a
mann boundary condition modelling a vertical pistonconstant so that all the frequencies are initially present
driven by the hydrodynamic force acting upon its surface,in the spectrum and that, moreover, the wave group
is shown to be an asymptotically ideal long wave absorbervelocity is a function of the frequency which is the origin
(i.e., a high-pass water wave filter). The second one, aof the rays spreading in the (X, T ) plane (Fig. 11); this
variant of the classical numerical beach device, gives itsparticular behaviour resulting from the dispersive nature
best in the small wavelength range (i.e., a low-pass waterof the free surface condition is typical of unsteady free-
wave filter). The coupling of these methods is shown tosurface hydrodynamics.
be a very efficient damping strategy, with a 93% absorptionThe computations reported in this section were per-
coefficient in amplitude (99.5% in energy) in the worst caseformed with the linear code, but the corresponding nonlin-
(g P 1.5). Thus, it seems to give better results than anyear results (in [36]) show only slight differences with the
other previous one (Orlanski, beach alone, piston alone)present ones and lead to the same conclusions.
for the absorption of water waves of unknown frequencyWe first proceeded to the simulation in a long domain
in the time-domain.(L 5 30) with the coupling method used at the output

Moreover, the two following major advantages of the
end in order to get reference results in the shorter range

method must be emphasized:
0 , X , L 5 10 which will be used later, as if the It is straightforward to implement in linear and nonlinear
basin were semi-infinite. This open boundary case is solvers of water waves propagation problems, especially
illustrated by Fig. 11 which shows what should happen those based on BEM, and it gives as good results in the
if a perfectly absorbing condition (i.e., CA 5 1.0) was former case as in the latter one.
applied on P. It does not require any kind of tuning, neither of the

Another interesting reference case was computed beach length nor of the Rayleigh dissipative term. This
applying an homogeneous Neumann condition on P and latter feature is very important, referring to the numerical
no beach condition on the free surface, in order to simulate consequences of using the beach alone, as numerous au-
a perfectly reflecting wall (i.e., CA 5 0). On Fig. 12, one thors do. When doing so, the beach length must be in-
can observe the successive reflections of the initial system creased proportionally to the longest wavelength supposed
of diverging waves occurring upon, alternatively, the left to be absorbed in order to maintain a good overall effi-
and the right ends of the domain. ciency (see Fig. 6); this necessarily results in an increased

The three absorption strategies presented herein were number of unknowns (vertices, panels) and a heavier com-
tested in linear and then in nonlinear modelling: PABC putational burden. This point, already sensitive in such 2D
alone; numerical beach alone; and coupled PABC 1 beach computations, will take on crucial importance in future
in a domain of length L 5 10. Results of these three simulations of 3D nonlinear free surface flows [39]. The
simulations in the linear case are given as a waterfall view present method does not behave so because the beach
on Figs. 13–15. length is not linked to the longest waves to absorb; this

On Fig. 13, the PABC (2.7) was used on the right end work is done by the PABC.
of the basin. The high-pass character of this absorbing
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